ArangoDB v3.10 reached End of Life (EOL) and is no longer supported.
This documentation is outdated. Please see the most recent stable version.
SmartJoins
SmartJoins allow to execute co-located join operations among identically sharded collections
ArangoDB Enterprise Edition ArangoGraph
Cluster joins without being smart
When doing joins in an ArangoDB cluster, data has to be exchanged between different servers. Joins between different collections in a cluster normally require roundtrips between the shards of these collections for fetching the data. Requests are routed through an extra Coordinator hop.
For example, with two collections c1
and c2
with 4 shards each, the Coordinator
initially contacts the 4 shards of c1
. In order to perform the join, the DB-Server nodes
which manage the actual data of c1
need to pull the data from the other collection, c2
.
This causes extra roundtrips via the Coordinator, which then pulls the data for c2
from the responsible shards:
arangosh> db._explain("FOR doc1 IN c1 FOR doc2 IN c2 FILTER doc1._key == doc2._key RETURN doc1");
Query String:
FOR doc1 IN c1 FOR doc2 IN c2 FILTER doc1._key == doc2._key RETURN doc1
Execution plan:
Id NodeType Site Est. Comment
1 SingletonNode DBS 1 * ROOT
3 EnumerateCollectionNode DBS 0 - FOR doc2 IN c2 /* full collection scan, 4 shard(s) */
14 RemoteNode COOR 0 - REMOTE
15 GatherNode COOR 0 - GATHER
8 ScatterNode COOR 0 - SCATTER
9 RemoteNode DBS 0 - REMOTE
7 IndexNode DBS 0 - FOR doc1 IN c1 /* primary index scan, 4 shard(s) */
10 RemoteNode COOR 0 - REMOTE
11 GatherNode COOR 0 - GATHER
6 ReturnNode COOR 0 - RETURN doc1
This is the general query execution, and it makes sense if there is no further
information available about how the data is actually distributed to the individual
shards. It works in case c1
and c2
have a different amount of shards, or use
different shard keys or strategies. However, it comes with the additional cost of
having to do 4 x 4 requests to perform the join.
Sharding two collections identically using distributeShardsLike
In the specific case that the two collections have the same number of shards, the data of the two collections can be co-located on the same server for the same shard key values. In this case, the extra hop via the Coordinator is not necessary.
The query optimizer removes the extra hop for the join in case it can prove that data for the two collections is co-located.
The first step is thus to make the two collections shard their data alike. This can
be achieved by making the distributeShardsLike
attribute of one of the collections
refer to the other collection.
Here is an example setup for this, using arangosh:
arangosh> db._create("c1", {numberOfShards: 4, shardKeys: ["_key"]});
arangosh> db._create("c2", {shardKeys: ["_key"], distributeShardsLike: "c1"});
Now the collections c1
and c2
not only have the same shard keys, but they
also locate their data for the same shard keys values on the same server.
Let’s check how the data actually gets distributed now. We first confirm that the two collections have 4 shards each, which in this example are evenly distributed across two servers:
arangosh> db.c1.shards(true)
{
"s2011661" : [
"PRMR-64d19f43-3aa0-4abb-81f6-4b9966d32175"
],
"s2011662" : [
"PRMR-5f30caa0-4c93-4fdd-98f3-a2130c1447df"
],
"s2011663" : [
"PRMR-64d19f43-3aa0-4abb-81f6-4b9966d32175"
],
"s2011664" : [
"PRMR-5f30caa0-4c93-4fdd-98f3-a2130c1447df"
]
}
arangosh> db.c2.shards(true)
{
"s2011666" : [
"PRMR-64d19f43-3aa0-4abb-81f6-4b9966d32175"
],
"s2011667" : [
"PRMR-5f30caa0-4c93-4fdd-98f3-a2130c1447df"
],
"s2011668" : [
"PRMR-64d19f43-3aa0-4abb-81f6-4b9966d32175"
],
"s2011669" : [
"PRMR-5f30caa0-4c93-4fdd-98f3-a2130c1447df"
]
}
Because we have told both collections that distribute their data alike, their shards are now also populated alike:
arangosh> for (i = 0; i < 100; ++i) {
db.c1.insert({ _key: "test" + i });
db.c2.insert({ _key: "test" + i });
}
arangosh> db.c1.count(true);
{
"s2011664" : 22,
"s2011661" : 21,
"s2011663" : 27,
"s2011662" : 30
}
arangosh> db.c2.count(true);
{
"s2011669" : 22,
"s2011666" : 21,
"s2011668" : 27,
"s2011667" : 30
}
We can see that shard 1 of c1
(“s2011664”) has the same number of documents as
shard 1 of c2
(“s20116692), that shard 2 of c1
(“s2011661”) has the same
number of documents as shard2 of c2
(“s2011666”) etc.
Additionally, we can see from the shard-to-server distribution above that the
corresponding shards from c1
and c2
always reside on the same node.
This is a precondition for running joins locally, and thanks to the effects of
distributeShardsLike
it is now satisfied!
SmartJoins using distributeShardsLike
With the two collections in place like this, an AQL query that uses a FILTER condition that refers from the shard key of the one collection to the shard key of the other collection and compares the two shard key values by equality is eligible for the query optimizer’s “smart-joins” optimization:
arangosh> db._explain("FOR doc1 IN c1 FOR doc2 IN c2 FILTER doc1._key == doc2._key RETURN doc1");
Query String:
FOR doc1 IN c1 FOR doc2 IN c2 FILTER doc1._key == doc2._key RETURN doc1
Execution plan:
Id NodeType Site Est. Comment
1 SingletonNode DBS 1 * ROOT
3 EnumerateCollectionNode DBS 0 - FOR doc2 IN c2 /* full collection scan, 4 shard(s) */
7 IndexNode DBS 0 - FOR doc1 IN c1 /* primary index scan, 4 shard(s) */
10 RemoteNode COOR 0 - REMOTE
11 GatherNode COOR 0 - GATHER
6 ReturnNode COOR 0 - RETURN doc1
As can be seen above, the extra hop via the Coordinator is gone here, which means less cluster-internal traffic and a faster response time.
SmartJoins also work if the shard key of the second collection is not _key
,
and even for non-unique shard key values, e.g.:
arangosh> db._create("c1", {numberOfShards: 4, shardKeys: ["_key"]});
arangosh> db._create("c2", {shardKeys: ["parent"], distributeShardsLike: "c1"});
arangosh> db.c2.ensureIndex({ type: "hash", fields: ["parent"] });
arangosh> for (i = 0; i < 100; ++i) {
db.c1.insert({ _key: "test" + i });
for (j = 0; j < 10; ++j) {
db.c2.insert({ parent: "test" + i });
}
}
arangosh> db._explain("FOR doc1 IN c1 FOR doc2 IN c2 FILTER doc1._key == doc2.parent RETURN doc1");
Query String:
FOR doc1 IN c1 FOR doc2 IN c2 FILTER doc1._key == doc2.parent RETURN doc1
Execution plan:
Id NodeType Site Est. Comment
1 SingletonNode DBS 1 * ROOT
3 EnumerateCollectionNode DBS 2000 - FOR doc2 IN c2 /* full collection scan, 4 shard(s) */
7 IndexNode DBS 2000 - FOR doc1 IN c1 /* primary index scan, 4 shard(s) */
10 RemoteNode COOR 2000 - REMOTE
11 GatherNode COOR 2000 - GATHER
6 ReturnNode COOR 2000 - RETURN doc1
distributeShardsLike
attribute and using the shard keys as the join criteria as shown above.SmartJoins using smartJoinAttribute
In case the join on the second collection must be performed on a non-shard key
attribute, there is the option to specify a smartJoinAttribute
for the collection.
Note that for this case, setting distributeShardsLike
is still required here, and that
only a single shardKeys
attribute can be used.
The single attribute name specified in the shardKeys
attribute for the collection must end
with a colon character then.
This smartJoinAttribute
must be populated for all documents in the collection,
and must always contain a string value. The value of the _key
attribute for each
document must consist of the value of the smartJoinAttribute
, a colon character
and then some other user-defined key component.
The setup thus becomes:
arangosh> db._create("c1", {numberOfShards: 4, shardKeys: ["_key"]});
arangosh> db._create("c2", {shardKeys: ["_key:"], smartJoinAttribute: "parent", distributeShardsLike: "c1"});
arangosh> db.c2.ensureIndex({ type: "hash", fields: ["parent"] });
arangosh> for (i = 0; i < 100; ++i) {
db.c1.insert({ _key: "test" + i });
db.c2.insert({ _key: "test" + i + ":" + "ownKey" + i, parent: "test" + i });
}
Failure to populate the smartJoinAttribute
with a string or not at all leads
to a document being rejected on insert, update or replace. Similarly, failure to
prefix a document’s _key
attribute value with the value of the smartJoinAttribute
also leads to the document being rejected:
arangosh> db.c2.insert({ parent: 123 });
JavaScript exception in file './js/client/modules/@arangodb/arangosh.js' at 99,7: ArangoError 4008: SmartJoin attribute not given or invalid
arangosh> db.c2.insert({ _key: "123:test1", parent: "124" });
JavaScript exception in file './js/client/modules/@arangodb/arangosh.js' at 99,7: ArangoError 4007: shard key value must be prefixed with the value of the SmartJoin attribute
The join can now be performed via the collection’s smartJoinAttribute
:
arangosh> db._explain("FOR doc1 IN c1 FOR doc2 IN c2 FILTER doc1._key == doc2.parent RETURN doc1")
Query String:
FOR doc1 IN c1 FOR doc2 IN c2 FILTER doc1._key == doc2.parent RETURN doc1
Execution plan:
Id NodeType Site Est. Comment
1 SingletonNode DBS 1 * ROOT
3 EnumerateCollectionNode DBS 101 - FOR doc2 IN c2 /* full collection scan, 4 shard(s) */
7 IndexNode DBS 101 - FOR doc1 IN c1 /* primary index scan, 4 shard(s) */
10 RemoteNode COOR 101 - REMOTE
11 GatherNode COOR 101 - GATHER
6 ReturnNode COOR 101 - RETURN doc1
Restricting SmartJoins to a single shard
If a FILTER condition is used on one of the shard keys, the optimizer also tries to restrict the queries to just the required shards:
arangosh> db._explain("FOR doc1 IN c1 FOR doc2 IN c2 FILTER doc1._key == 'test' && doc1._key == doc2.value RETURN doc1");
Query String:
FOR doc1 IN c1 FOR doc2 IN c2 FILTER doc1._key == 'test' && doc1._key == doc2.value
RETURN doc1
Execution plan:
Id NodeType Site Est. Comment
1 SingletonNode DBS 1 * ROOT
8 IndexNode DBS 1 - FOR doc1 IN c1 /* primary index scan, shard: s2010246 */
7 IndexNode DBS 1 - FOR doc2 IN c2 /* primary index scan, scan only, shard: s2010253 */
12 RemoteNode COOR 1 - REMOTE
13 GatherNode COOR 1 - GATHER
6 ReturnNode COOR 1 - RETURN doc1
Limitations
The SmartJoins optimization is currently triggered only for data selection queries, but not for any data-manipulation operations such as INSERT, UPDATE, REPLACE, REMOVE or UPSERT, neither traversals or subqueries.
It is only applied when joining two collections with an identical
sharding setup. This requires all involved but one collection to be created
with its distributeShardsLike
attribute pointing to the collection that is
the exception. All collections forming a View must be sharded in the same way,
otherwise the View is not eligible.
It is restricted to be used with simple shard key attributes (such as _key
, productId
),
but not with nested attributes (e.g. name.first
). There should be exactly one shard
key attribute defined for each collection.
Finally, the SmartJoins optimization requires that the involved collections are
joined on their shard key attributes (or smartJoinAttribute
) using an equality
comparison.
SmartJoins with Views
Views of the arangosearch
type are eligible for SmartJoins, provided that
their underlying collections are eligible too.